Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Leukoc Biol ; 113(3): 236-254, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2264093

ABSTRACT

A significant number of persons with coronavirus disease 2019 (COVID-19) experience persistent, recurrent, or new symptoms several months after the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This phenomenon, termed post-acute sequelae of SARS-CoV-2 (PASC) or long COVID, is associated with high viral titers during acute infection, a persistently hyperactivated immune system, tissue injury by NETosis-induced micro-thrombofibrosis (NETinjury), microbial translocation, complement deposition, fibrotic macrophages, the presence of autoantibodies, and lymphopenic immune environments. Here, we review the current literature on the immunological imbalances that occur during PASC. Specifically, we focus on data supporting common immunopathogenesis and tissue injury mechanisms shared across this highly heterogenous disorder, including NETosis, coagulopathy, and fibrosis. Mechanisms include changes in leukocyte subsets/functions, fibroblast activation, cytokine imbalances, lower cortisol, autoantibodies, co-pathogen reactivation, and residual immune activation driven by persistent viral antigens and/or microbial translocation. Taken together, we develop the premise that SARS-CoV-2 infection results in PASC as a consequence of acute and/or persistent single or multiple organ injury mediated by PASC determinants to include the degree of host responses (inflammation, NETinjury), residual viral antigen (persistent antigen), and exogenous factors (microbial translocation). Determinants of PASC may be amplified by comorbidities, age, and sex.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , SARS-CoV-2 , Leukocytes , Antigens, Viral , Autoantibodies , Disease Progression
2.
mBio ; 14(1): e0339322, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2223575

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the immunological profiles of natural killer (NK) cells. However, whether NK antiviral functions are impaired during severe coronavirus disease 2019 (COVID-19) and what host factors modulate these functions remain unclear. We found that NK cells from hospitalized COVID-19 patients degranulate less against SARS-CoV-2 antigen-expressing cells (in direct cytolytic and antibody-dependent cell cytotoxicity [ADCC] assays) than NK cells from mild COVID-19 patients or negative controls. The lower NK degranulation was associated with higher plasma levels of SARS-CoV-2 nucleocapsid antigen. Phenotypic and functional analyses showed that NK cells expressing the glyco-immune checkpoint Siglec-9 elicited higher ADCC than Siglec-9- NK cells. Consistently, Siglec-9+ NK cells exhibit an activated and mature phenotype with higher expression of CD16 (FcγRIII; mediator of ADCC), CD57 (maturation marker), and NKG2C (activating receptor), along with lower expression of the inhibitory receptor NKG2A, than Siglec-9- CD56dim NK cells. These data are consistent with the concept that the NK cell subpopulation expressing Siglec-9 is highly activated and cytotoxic. However, the Siglec-9 molecule itself is an inhibitory receptor that restrains NK cytotoxicity during cancer and other viral infections. Indeed, blocking Siglec-9 significantly enhanced the ADCC-mediated NK degranulation and lysis of SARS-CoV-2-antigen-positive target cells. These data support a model in which the Siglec-9+ CD56dim NK subpopulation is cytotoxic even while it is restrained by the inhibitory effects of Siglec-9. Alleviating the Siglec-9-mediated restriction on NK cytotoxicity may further improve NK immune surveillance and presents an opportunity to develop novel immunotherapeutic tools against SARS-CoV-2 infected cells. IMPORTANCE One mechanism that cancer cells use to evade natural killer cell immune surveillance is by expressing high levels of sialoglycans, which bind to Siglec-9, a glyco-immune checkpoint molecule on NK cells. This binding inhibits NK cell cytotoxicity. Several viruses, such as hepatitis B virus (HBV) and HIV, also use a similar mechanism to evade NK surveillance. We found that NK cells from SARS-CoV-2-hospitalized patients are less able to function against cells expressing SARS-CoV-2 Spike protein than NK cells from SARS-CoV-2 mild patients or uninfected controls. We also found that the cytotoxicity of the Siglec-9+ NK subpopulation is indeed restrained by the inhibitory nature of the Siglec-9 molecule and that blocking Siglec-9 can enhance the ability of NK cells to target cells expressing SARS-CoV-2 antigens. Our results suggest that a targetable glyco-immune checkpoint mechanism, Siglec-9/sialoglycan interaction, may contribute to the ability of SARS-CoV-2 to evade NK immune surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies/metabolism , Antibody-Dependent Cell Cytotoxicity , COVID-19/metabolism , Killer Cells, Natural , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
4.
JCI Insight ; 7(15)2022 08 08.
Article in English | MEDLINE | ID: covidwho-1902172

ABSTRACT

Long COVID, a type of post-acute sequelae of SARS-CoV-2 (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the mechanisms that drive this inflammation remain unknown. Inflammation during acute coronavirus disease 2019 could be exacerbated by microbial translocation (from the gut and/or lung) to blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We did not observe a significant elevation in plasma markers of bacterial translocation during PASC. However, we observed higher levels of fungal translocation - measured as ß-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared with those without PASC or SARS-CoV-2-negative controls. The higher ß-glucan correlated with higher inflammation and elevated levels of host metabolites involved in activating N-methyl-d-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neurotoxic properties. Mechanistically, ß-glucan can directly induce inflammation by binding to myeloid cells (via Dectin-1) and activating Syk/NF-κB signaling. Using a Dectin-1/NF-κB reporter model, we found that plasma from individuals experiencing PASC induced higher NF-κB signaling compared with plasma from negative controls. This higher NF-κB signaling was abrogated by piceatannol (Syk inhibitor). These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC.


Subject(s)
COVID-19 , beta-Glucans , COVID-19/complications , Humans , Inflammation , Lectins, C-Type/metabolism , NF-kappa B/metabolism , SARS-CoV-2 , Syk Kinase , Post-Acute COVID-19 Syndrome
6.
Methods Mol Biol ; 2410: 229-263, 2022.
Article in English | MEDLINE | ID: covidwho-1575944

ABSTRACT

Vaccines are one of mankind's greatest medical advances, and their use has drastically reduced and in some cases eliminated (e.g., smallpox) disease and death caused by infectious agents. Traditional vaccine modalities including live-attenuated pathogen vaccines, wholly inactivated pathogen vaccines, and protein-based pathogen subunit vaccines have successfully been used to create efficacious vaccines against measles, mumps, rubella, polio, and yellow fever. These traditional vaccine modalities, however, take many months to years to develop and have thus proven less effective for use in creating vaccines to emerging or reemerging infectious diseases (EIDs) including influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), Middle East respiratory syndrome (MERS), and the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV and SARS-CoV-2). As factors such as climate change and increased globalization continue to increase the pace of EID development, newer vaccine modalities are required to develop vaccines that can prevent or attenuate EID outbreaks throughout the world. One such modality, DNA vaccines, has been studied for over 30 years and has numerous qualities that make them ideal for meeting the challenge of EIDs including; (1) DNA vaccine candidates can be designed within hours of publishing of a pathogens genetic sequence; (2) they can be manufactured cheaply and rapidly in large quantities; (3) they are thermostable and have reduced requirement for a cold-chain during distribution, and (4) they have a remarkable safety record in the clinic. Optimizations made in plasmid design as well as in DNA vaccine delivery have greatly improved the immunogenicity of these vaccines. Here we describe the process of making a DNA vaccine to an EID pathogen and describe methods used for assessing the immunogenicity and protective efficacy of DNA vaccines in small animal models.


Subject(s)
Communicable Diseases, Emerging , Vaccines, DNA , Viral Vaccines , Animals , COVID-19 , Communicable Diseases, Emerging/prevention & control , Humans , Immunity , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Vaccines, Attenuated/immunology , Vaccines, DNA/immunology , Vaccines, Inactivated/immunology , Vaccines, Synthetic/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
8.
Cell Rep Med ; 2(10): 100420, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1450242

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Lung/virology , T-Lymphocytes/immunology , Animals , Antibodies, Neutralizing/blood , COVID-19 Vaccines/therapeutic use , Female , Injections, Intradermal , Macaca mulatta , Male , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/therapeutic use , Viral Load
9.
ACS Pharmacol Transl Sci ; 4(4): 1349-1361, 2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1358338

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the highly contagious nature of SARS-CoV-2, it has infected more than 137 million individuals and caused more than 2.9 million deaths globally as of April 13, 2021. There is an urgent need to develop effective novel therapeutic strategies to treat or prevent this infection. Toward this goal, we focused on the development of monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike glycoprotein (SARS-CoV-2 Spike) present on the surface of virus particles as well as virus-infected cells. We isolated anti-SARS-CoV-2 Spike mAbs from animals immunized with a DNA vaccine. We then selected a highly potent set of mAbs against SARS-CoV-2 Spike protein and evaluated each candidate for their expression, target binding affinity, and neutralization potential using complementary ACE2-blocking and pseudovirus neutralization assays. We identified a total of 10 antibodies, which specifically and strongly bound to SARS-CoV-2 Spike, blocked the receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) interaction, and neutralized SARS-CoV-2. Furthermore, the glycomic profile of the antibodies suggested that they have high Fc-mediated effector functions. These antibodies should be further investigated for elucidating the neutralizing epitopes on Spike for the design of next-generation vaccines and for their potential in diagnostic as well as therapeutic utilities against SARS-CoV-2.

10.
Front Immunol ; 12: 686240, 2021.
Article in English | MEDLINE | ID: covidwho-1285294

ABSTRACT

A disruption of the crosstalk between the gut and the lung has been implicated as a driver of severity during respiratory-related diseases. Lung injury causes systemic inflammation, which disrupts gut barrier integrity, increasing the permeability to gut microbes and their products. This exacerbates inflammation, resulting in positive feedback. We aimed to test whether severe Coronavirus disease 2019 (COVID-19) is associated with markers of disrupted gut permeability. We applied a multi-omic systems biology approach to analyze plasma samples from COVID-19 patients with varying disease severity and SARS-CoV-2 negative controls. We investigated the potential links between plasma markers of gut barrier integrity, microbial translocation, systemic inflammation, metabolome, lipidome, and glycome, and COVID-19 severity. We found that severe COVID-19 is associated with high levels of markers of tight junction permeability and translocation of bacterial and fungal products into the blood. These markers of disrupted intestinal barrier integrity and microbial translocation correlate strongly with higher levels of markers of systemic inflammation and immune activation, lower levels of markers of intestinal function, disrupted plasma metabolome and glycome, and higher mortality rate. Our study highlights an underappreciated factor with significant clinical implications, disruption in gut functions, as a potential force that may contribute to COVID-19 severity.


Subject(s)
COVID-19/immunology , Gastrointestinal Microbiome/immunology , Inflammation/immunology , Intestines/physiology , SARS-CoV-2/physiology , Female , Glycomics , Haptoglobins/metabolism , Humans , Lipidomics , Male , Metabolomics , Middle Aged , Permeability , Protein Precursors/metabolism , Tight Junctions/metabolism
11.
mBio ; 12(2)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195825

ABSTRACT

Beyond neutralization, antibodies binding to their Fc receptors elicit several innate immune functions including antibody-dependent complement deposition (ADCD), antibody-dependent cell-mediated phagocytosis (ADCP), and antibody-dependent cell-mediated cytotoxicity (ADCC). These functions are beneficial, as they contribute to pathogen clearance; however, they also can induce inflammation. We tested the possibility that qualitative differences in SARS-CoV-2-specific antibody-mediated innate immune functions contribute to coronavirus disease 2019 (COVID-19) severity. We found that anti-S1 and anti-RBD antibodies from hospitalized COVID-19 patients elicited higher ADCD but lower ADCP compared to antibodies from nonhospitalized COVID-19 patients. Consistently, higher ADCD was associated with higher systemic inflammation, whereas higher ADCP was associated with lower systemic inflammation during COVID-19. Our study points to qualitative, differential features of anti-SARS-CoV-2 specific antibodies as potential contributors to COVID-19 severity. Understanding these qualitative features of natural and vaccine-induced antibodies will be important in achieving optimal efficacy and safety of SARS-CoV-2 vaccines and/or COVID-19 therapeutics.IMPORTANCE A state of hyperinflammation and increased complement activation has been associated with coronavirus disease 2019 (COVID-19) severity. However, the pathophysiological mechanisms that contribute to this phenomenon remain mostly unknown. Our data point to a qualitative, rather than quantitative, difference in SARS-CoV-2-specific antibodies' ability to elicit Fc-mediated innate immune functions as a potential contributor to COVID-19 severity and associated inflammation. These data highlight the need for further studies to understand these qualitative features and their potential contribution to COVID-19 severity. This understanding could be essential to develop antibody-based COVID-19 therapeutics and SARS-CoV-2 vaccines with an optimal balance between efficacy and safety.


Subject(s)
Antibodies, Viral , COVID-19/immunology , Immunity, Innate , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Specificity , Antibody-Dependent Cell Cytotoxicity , Biomarkers/blood , COVID-19/etiology , COVID-19/virology , Case-Control Studies , Cohort Studies , Complement Activation , Female , Humans , Immunoglobulin Fc Fragments/immunology , Inflammation/blood , Inflammation/etiology , Inflammation/immunology , Male , Middle Aged , Pandemics , Phagocytosis , Receptors, Fc/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL